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A Three-stage Deep Learning Model for Accurate
Retinal Vessel Segmentation

Zengqiang Yan, Xin Yang, and Kwang-Ting (Tim) Cheng, Fellow, IEEE

Abstract—Automatic retinal vessel segmentation is a funda-
mental step in the diagnosis of eye-related diseases, in which both
thick vessels and thin vessels are important features for symptom
detection. All existing deep learning models attempt to segment
both types of vessels simultaneously by using a unified pixel-
wise loss which treats all vessel pixels with equal importance.
Due to the highly imbalanced ratio between thick vessels and
thin vessels (namely the majority of vessel pixels belong to thick
vessels), the pixel-wise loss would be dominantly guided by thick
vessels and relatively little influence comes from thin vessels,
often leading to low segmentation accuracy for thin vessels. To
address the imbalance problem, in this paper, we explore to
segment thick vessels and thin vessels separately by proposing a
three-stage deep learning model. The vessel segmentation task is
divided into three stages, namely thick vessel segmentation, thin
vessel segmentation and vessel fusion. As better discriminative
features could be learned for separate segmentation of thick
vessels and thin vessels, this process minimizes the negative
influence caused by their highly imbalanced ratio. The final
vessel fusion stage refines the results by further identifying
non-vessel pixels and improving the overall vessel thickness
consistency. The experiments on public datasets DRIVE, STARE
and CHASE DB1 clearly demonstrate that the proposed three-
stage deep learning model outperforms the current state-of-the-
art vessel segmentation methods.

Index Terms—Deep learning, vessel segmentation, imbalance
problem, retinal image analysis

I. INTRODUCTION

RETINAL fundus images have been widely used for the
diagnosis of eye-related diseases, such as macular degen-

eration, diabetic retinopathy, and glaucoma. Among various
features in fundus images, retinal vessel features play a crucial
role such as thin vessels for microaneurysm detection and
thick vessels for vessel diameter measurement which are two
important biomarkers for the diagnosis of diabetic retinopathy
[1]. However, manual annotation of retinal vessels by a human
observer is time-consuming, which makes the automated reti-
nal vessel segmentation highly desirable. Generally, current
retinal vessel segmentation methods can be classified into
two main categories: unsupervised methods and supervised
methods.

Unsupervised methods do not utilize any manual annotation
for reference, and thus mainly rely on handcrafted features
for vessel representation and segmentation. According to the
types of features, existing unsupervised approaches can be
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further categorized into the filter-based [2], [3], [4], [5] and
the model-based [6], [7], [8]. For the filter-based methods,
Mendonca et al. [9] proposed four directional differential
operators to detect vessel centerlines, and used an iterative
region growing method combined with a morphological filter
for vessel segmentation based on those vessel centerlines.
Martinez-Perez et al. [10] applied a multi-pass region growing
method to the first and second spatial derivatives of the
corresponding intensity image. Similarly, Zhang et al. [11]
segmented blood vessels by applying a matched filter to the
first-order derivative of the Gaussian filtered image. Fraz et
al. [12] used the first-order derivative of a Gaussian filter and
a multi-directional morphological top-hat operator for feature
extraction and vessel segmentation. Lam et al. [13] defined
a multi-concavity model for vessel segmentation, including
a differentiable concavity measure, a line-shape concavity
measure, and a locally normalized measure. Azzopardi et
al. [14] proposed a modified B-COSFIRE filter by combing
the difference-of-Gaussian (DoG) filter with the mean shift-
ing operation. Yin et al. [15] proposed an orientation-aware
detector onto the energy distribution of the corresponding
Fourier transformation. Zhang et al. [16] transformed fundus
images into the lifted domain by wavelet transformation, and
used a multi-scale second-order Gaussian filter for vessel
segmentation. In terms of the model-based methods, Ali-Diri
et al. [17] proposed an active contour model using two pairs
of contours to locate each vessel edge, and Zhao et al. [18]
proposed to solve an infinite active contour model by using
hybrid region information.

In contrast to unsupervised methods, supervised approaches
learn either vessel features or vessel pixel classifiers for
segmentation from the annotated training images. Existing
supervised methods can be further divided into traditional
machine learning based methods and deep learning based
methods. Traditional machine learning based methods mainly
depend on handcrafted features and utilize typical classifiers
for segmentation including the k-nearest neighbor classifier
(KNN) [19] and the support vector machine (SVM) [20]. Ricci
et al. [21] extracted features by a line detector and segmented
vessels by using a support vector machine. Lupaşcu et al. [22]
constructed the feature vector consisting of local intensity,
spatial properties and geometry and adopted an AdaBoost
classifier for segmentation. Soares et al. [23] used the two-
dimensional Gabor wavelet transformation response and the
pixel intensity as the feature vector, and conducted vessel
segmentation based on a Bayesian classifier. Marin et al. [24]
proposed a 7-D feature vector followed by a neural network
for vessel segmentation. Fraz et al. [25] defined a feature
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vector consisting of gradient, morphology, line strength and
Gabor filter response, and used an ensemble system of bagged
and boosted decision trees for vessel segmentation. Different
from traditional machine learning based methods, deep learn-
ing based methods [26], [27], [28], [29] have shown strong
ability to automatically learn features for accurate vessel
segmentation. Orlando et al. [30] proposed a discriminatively
trained fully connected conditional random field model for
vessel segmentation. Fu et al. [31], [32] proposed to solve the
vessel segmentation problem based on a fully convolutional
neural network combined with a fully-connected Conditional
Random Fields (CRFs). Li et al. [33] remolded the vessel
segmentation task as a cross-modality data transformation
problem, which was further modeled by training a deep
learning model. Dasgupta [34] proposed a deep learning model
to iteratively classify each pixel in fundus images. In [35],
several deep learning architectures have been tested for vessel
segmentation.

All existing deep learning models are trained by using a
unified pixel-wise loss for the segmentation of both thick and
thin vessels simultaneously. In the pixel-wise loss, all vessel
pixels are treated with equal importance. However, due to the
fact that the majority of vessel pixels in fundus images belong
to thick vessels, the pixel-wise loss would penalize more on
thick vessels than thin vessels, which in turn would guide the
deep learning models for better segmentation of thick vessels
to minimize the overall pixel-wise losses. Consequently, the
trained deep learning models are able to learn robust features
for the segmentation of thick vessels, while the ability for
the segmentation of thin vessels is relatively limited. In this
paper, we propose to further divide the vessel segmentation
task into three sub-tasks: thick vessel segmentation, thin vessel
segmentation, and vessel fusion. As sub-tasks of segmenting
thick vessels and thin vessels are implemented by separate
deep learning models, better discriminative features can be
learned for thick vessels and thin vessels respectively. By
adopting a deep learning model to automatically fuse the
segmented thick vessels and thin vessels, the proposed three-
stage deep learning model is able to achieve accurate vessel
segmentation for both types of vessels. Experimental results on
multiple public datasets demonstrate that the three-stage deep
learning model considerably outperforms the current state-of-
the-art methods.

The paper is organized as follows. A thorough analysis
of the retinal vessel segmentation problem is presented in
Section II. Section III presents details of the proposed three-
stage deep learning framework. In Section IV, we evaluate
the effectiveness of the proposed three-stage framework on
public datasets. Section IV provides a discussion about the
proposed model on dealing with challenging cases and Section
V concludes the paper.

II. PROBLEM ANALYSIS

In retinal vessel segmentation, both thick vessels and thin
vessels are important features for symptom detection in the di-
agnosis of eye-related diseases. However, accurately segment-
ing both thick and thin vessels simultaneously is challenging
due to the following reasons:

Fig. 1: Analysis of the retinal vessel segmentation problem.
Row 1: from left to right, the fundus image and the enlarged
patches, and the manual annotation and the annotations of
the two fundus image patches. Row 2: from left to right,
the manually annotated thick vessels and the annotated thick
vessels in the two fundus image patches, and the manually
annotated thin vessels and the annotated thin vessels in the
two fundus image patches.

1) Imbalance: In fundus images, the majority of vessel pix-
els belong to thick vessels. Given the manual annotation
in Fig. 1, if the vessels whose thickness is less than
3 pixels are denoted as “thin vessels” and the rest are
denoted as “thick vessels”, nearly 77% of vessel pixels
belong to the “thick vessels” and the “thin vessels” only
account for 23%. As all existing deep learning models
are trained by pixel-wise losses which treat all vessel
pixels with equal importance, the trained models tend to
more accurately segment thick vessels when minimizing
the overall losses while the segmentation of thin vessels
would be less important as analyzed in [36]. As a
result, using a pixel-wise loss to simultaneously segment
both thick and thin vessels would put thin vessels at a
disadvantage.

2) Feature difference: From the two enlarged patches and
the corresponding annotated thick and thin vessels in
Fig. 1, one basic observation is that thick vessels usually
have much higher contrast and signal to noise ratio
(SNR) than those of thin vessels. Therefore, the features
for segmenting thick vessels might not be applicable to
effectively segment thin vessels.

Based on the above two reasons, simultaneously segmenting
both thick and thin vessels using pixel-wise losses would result
in better segmentation performance for thick vessels than thin
vessels.

III. METHODOLOGY

Figure 2 illustrates the overall framework of the proposed
three-stage deep learning model, which consists of three sepa-
rate models, namely ThickSegmenter for thick vessel segmen-
tation, ThinSegmenter for thin vessel segmentation and Fu-
sionSegmenter for vessel fusion respectively. The three models
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Fig. 2: The overview of the proposed three-stage deep learning framework. The framework consists of three separate models,
namely ThickSegmenter for thick vessel segmentation, ThinSegmenter for thin vessel segmentation and FusionSegmenter for
vessel fusion respectively.

Fig. 3: Manual annotations, denoted in black, used for training
different models. Red pixels represent those vessel pixels that
are not counted for loss calculation and back propagation.
From left to right: (a) the annotated thick vessels for training
ThickSegmenter, (b) the annotated thin vessels for the training
of ThinSegmenter, and (c) the annotated vessels for training
FusionSegmenter.

(i.e. ThickSegmenter, ThinSegmenter and FusionSegmenter)
are trained separately and sequentially, and the corresponding
annotations required for training different models are shown
in Fig. 3. Details of the training strategy are as follows:

1) Training ThickSegmenter: For training the ThickSeg-
menter model, only those annotated thick vessels, as
shown in black in Fig. 3(a), are used as ground truth
for training. That is, the losses generated by the thin
vessels are ignored and only the losses of thick vessels
are used for back propagation. The input for training
ThickSegmenter is the green channel of each fundus
image (shown in Fig. 4(a)), and the output is the predicted
thick vessels (shown in Fig. 4(c)).

2) Training ThinSegmenter: To train ThinSegmenter, only
those annotated thin vessels, as shown in black in Fig.
3(b), are used as ground truth. That is, the losses gener-

Fig. 4: Exemplar results of thick vessel segmentation obtained
by ThickSegmenter. From left to right: (a) the input fundus
image for training ThickSegmenter, (b) the complete manual
annotation (with both thick and thin vessels), and (c) the
predicted thick vessels by ThickSegmenter.

ated by the thick vessels are ignored and only the losses of
thin vessels are used for back propagation. The input for
training ThinSegmenter is the concatenation of the green
channel of each fundus image and the predicted thick
vessels by ThickSegmenter. The output is the predicted
thin vessels.

3) Training FusionSegmenter: For the FusionSegmenter
model, all annotated vessels are used for training as
shown in Fig. 3(c). The input for training FusionSeg-
menter is the concatenation of the predicted thick vessels
by ThickSegmenter and the predicted thin vessels by
ThinSegmenter. The output of FusionSegmenter is the
final predicted probability map.

We employ the widely used pixel-wise cross-entropy loss
function to train each model in the proposed three-stage
framework.
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Fig. 5: Exemplar results of thin vessel segmentation by Thin-
Segmenter. From left to right: the complete manual annotation
(with both thick and thin vessels), the predicted thick vessels
by ThickSegmenter and the predicted thin vessels by ThinSeg-
menter.

A. ThickSegmenter
Based on the observation that thick vessels generally have

higher contrast and SNR than thin vessels as discussed in
Section II, we directly adopt a model with only one pooling
layer to extract robust local features as shown in Fig. 2.
From the segmentation results generated by ThickSegmenter as
shown in Fig. 4, we find that the simple model can successfully
segment almost all thick vessels but few thin vessels, which
demonstrates that the features for the segmentation of thick
vessels might not be applicable for segmenting thin vessels.

B. ThinSegmenter
For thin vessel segmentation, we adopt a simplified FCN

model [37] which contains multiple pooling layers for global
feature extraction, based on the above observation that thin
vessels usually have relatively lower local contrast and SNR.
In addition to the fundus image, we further utilize the seg-
mented thick vessels by ThickSegmenter as another input for
training ThinSegmenter. This is because that most thin vessels
are connected with thick vessels as shown in the manual
annotation of Fig. 5, and using the segmented thick vessels
as guidance would help differentiate thin vessels from those
non-vessel pixels. Here, the fundus image and the predicted
thick vessels by ThickSegmenter are concatenated together
as input to train ThinSegmenter. As a result, the probability
map generated by ThinSegmenter is quite “clean” as shown in
Fig. 5, which means that vessel pixels and non-vessel pixels
are effectively separated. Comparing the generated probability
map to the corresponding manual annotation, we find that most
thin vessels are successfully detected and the only problem is
the thickness inconsistency between the segmented thin vessels
and those annotated thin vessels. The thickness inconsistency
problem mainly is due to the resolution limitation of fundus
images. In addition, in the generated probability map in Fig.
5, only partial thick vessels are detected by ThinSegmenter,
which further validates the fact that thick vessels and thin
vessels have distinct feature characteristics and thus the fea-
tures for segmenting thin vessels might not be applicable for
the segmentation of thick vessels.

C. FusionSegmenter
FusionSegmenter refines the results to further improve the

overall vessel thickness consistency, as the segmented thin

Fig. 6: Exemplar results of vessel fusion obtained by Fusion-
Segmenter. From left to right: the predicted thick vessels by
ThickSegmenter, the thin vessels generated by ThinSegmenter
and the final vessel segmentation obtained by FusionSeg-
menter.

vessels produced by ThinSegmenter usually are thicker than
those annotated vessels. Comparing the segmented vessels
in the final probability map by FusionSegmenter with those
previously segmented vessels by ThickSegmenter and ThinSeg-
menter in Fig. 6, the fused vessels indeed have better thickness
consistency with those manually annotated vessels.

IV. EVALUATION

A. Datasets

Three public datasets DRIVE [19], STARE [38] and
CHASE DB1 [39] are used for evaluation.

DRIVE contains 40 equal-sized fundus images (565× 584
pixels) with a 45◦ FOV. Among all images, 7 of them contain
pathology. The dataset is officially and equally split into the
training set and the test set. For the training set, only one
manual annotation is provided for each image, while for
the test set two manual annotations from two observers are
provided. We utilize the same evaluation strategy as other
methods and leverage the annotations by the first observer as
the ground truth for performance measurement.

STARE consists of 20 equal-sized images (700×605 pixels).
Among all images, 10 of them contain pathology. As training
and test sets are not explicitly specified, the same leave-one-
out cross validation is adopted for performance evaluation,
where models are iteratively trained on 19 images and tested
on the rest image. Same as other methods, manual annotations
generated by the first observer are used for both training and
test. Since FOV masks are not provided and there exists no
uniform generation method, the masks provided in [24] and
[30] are used for comparison.

CHASE DB1 comprises 28 equal-sized fundus images
(999× 960 pixels) with a 30◦ FOV. We adopt the same split
strategy as described in [33] to divide the entire dataset into
training and test sets. That is the first 20 images are selected
for training and the rest 8 images are used for testing.

B. Preprocessing

To reduce the training complexity, each fundus image in the
training set is converted to gray scale by extracting the green
channel. Then, each fundus image is cropped into 128× 128
patches, and those patches in which the ratio of background
pixels (pixels located outside the FOV mask) is greater than
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Fig. 7: Exemplar vessel segmentation results by the proposed three-stage deep learning model. From top to bottom: the fundus
images, the manual annotations, the probability maps of thick vessels, the probability maps of thin vessels, the final probability
maps and the corresponding hard segmentation maps.

50% are further discarded. To enlarge the training set, multiple
data augmentation strategies have been utilized, including
flipping, rotation, resizing and enhancing contrast.

To separate thick vessels and thin vessels for training
different models, given a manual annotation, we first extract
the corresponding skeletons by applying the skeletonization
method [40]. Then, for each skeleton pixel, we calculate
the minimum inscribed circle centered at the pixel which is
completely covered by vessel pixels and use the diameter as

its vessel thickness. For those skeleton pixels whose vessel
thickness is below a fixed threshold, all pixels covered by the
minimum inscribed circle are denoted as thin vessel pixels.
The rest vessel pixels are classified as thick vessel pixels.

C. Implementation Details

The proposed three-stage deep learning model was imple-
mented based on the open-source deep learning library Caffe
[41]. The initial learning rate was set at 10−4 and decreased by
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TABLE I: Comparison Results on the DRIVE, STARE and CHASE DB1 Datasets

DRIVE STARE CHASE DB1
Methods Year Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

2nd Human Observer - 0.7760 0.9724 0.9472 - 0.8952 0.9384 0.9349 - 0.8105 0.9711 0.9545 -
Zhang [11] 2010 0.7120 0.9724 0.9382 - 0.7177 0.9753 0.9484 - - - - -
Fraz [12] 2012 0.7152 0.9759 0.9430 - 0.7311 0.9680 0.9442 - - - - -

Roychowdhury [4] 2015 0.7395 0.9782 0.9494 0.9672 0.7317 0.9842 0.9560 0.9673 0.7615 0.9575 0.9467 0.9623
Azzopardi [14] 2015 0.7655 0.9704 0.9442 0.9614 0.7716 0.9701 0.9497 0.9563 0.7585 0.9587 0.9387 0.9487

Yin [15] 2015 0.7246 0.9790 0.9403 - 0.8541 0.9419 0.9325 - - - - -
Zhang [16] 2016 0.7743 0.9725 0.9476 0.9636 0.7791 0.9758 0.9554 0.9748 0.7626 0.9661 0.9452 0.9606
You [20] 2011 0.7410 0.9751 0.9434 - 0.7260 0.9756 0.9497 - - - - -

Marin [24] 2011 0.7067 0.9801 0.9452 0.9588 0.6944 0.9819 0.9526 0.9769 - - - -
Fraz [25] 2012 0.7406 0.9807 0.9480 0.9747 0.7548 0.9763 0.9534 0.9768 0.7224 0.9711 0.9469 0.9712
Li [33] 2016 0.7569 0.9816 0.9527 0.9738 0.7726 0.9844 0.9628 0.9879 0.7507 0.9793 0.9581 0.9716
Fu [31] 2016 0.7603 - 0.9523 - 0.7412 - 0.9585 - 0.7130 - 0.9489 -

Orlando [30] 2017 0.7897 0.9684 - - 0.7680 0.9738 - - 0.7277 0.9715 - -
Dasgupta [34] 2017 0.7691 0.9801 0.9533 0.9744 - - - - - - - -

Proposed 2018 0.7631 0.9820 0.9538 0.9750 0.7735 0.9857 0.9638 0.9833 0.7641 0.9806 0.9607 0.9776

a factor of 10 every 20000 iterations until it reached 10−6. For
quality evaluation, we adopted the same method to select the
threshold to generate the corresponding binary segmentation
map from a given probability map as described in [33], where
the optimal threshold was set as the threshold maximizing the
overall accuracy on the training set.

D. Evaluation Metrics

Given a binary segmentation map and the corresponding
manual annotation, correctly detected vessel pixels are denoted
as true positives (TP) and those wrongly classified as non-
vessel pixels are counted as false negatives (FN). Similarly,
correctly segmented non-vessel pixels are denoted as true
negatives (TN) and those incorrectly detected as vessel pixels
are counted as false positives (FP). Then, sensitivity (Se),
specificity (Sp) and accuracy (Acc) are defined as

Se =
TP

TP + FN
,Sp =

TN

TN + FP
,Acc =

TP + TN

N
, (1)

where N = TN + TP + FN + FP . The receiving operator
characteristics (ROC) curve is computed with the true positive
ratio (Se) versus the false positive ratio (1−Sp) with respect to
a varying threshold, and the area under the ROC curve (AUC)
is calculated for quality evaluation.

E. Experimental Results

Exemplar results generated by the proposed three-stage
deep learning model are shown in Fig. 7. The probability
maps in Fig. 7 show that the proposed model is able to
effectively segment both thick and thin vessels. In addition, the
probability maps demonstrate the effectiveness of the proposed
model in classifying non-vessel pixels from vessel pixels. It
should be pointed out that the produced probability maps
contain some vessels which were not annotated by one human
observer while labeled as vessels by the other observer, and
thus these vessels should be regarded as true vessels.

Comparison results of both the proposed model and the
current state-of-the-art methods are summarized in Table I. For
the DRIVE dataset, the proposed three-stage model achieves
0.7631, 0.9820, 0.9538 and 0.9750 for Se, Sp, Acc and AUC

respectively, among which the results for Sp, Acc and AUC
are better than all the current state-of-the-art methods. In terms
of Se, Orlando [30] achieves the best results but the scores
for Sp, Acc and AUC are much lower. Considering the highly
imbalanced ratio between vessel pixels and non-vessel pixels,
the overall performance of the proposed model is much better.

For the STARE dataset, the proposed three-stage deep
learning model achieves 0.7735, 0.9846, 0.9638 and 0.9833 for
Se, Sp, Acc and AUC respectively, among which the results
for Sp and Acc are better than other methods and the score
for Se is the best among all supervised methods. Compared
to the results by Yin [15], though the score for Se achieved
by the proposed model is 0.0806 lower, the scores for Sp and
Acc are 0.0427 and 0.0313 higher. Thus, the proposed model
has better overall performance.

For the CHASE DB1 dataset, according to the objective
results in Table I, the proposed three-stage deep learning model
achieves 0.7641, 0.9806, 0.9607 and 0.9776 for Se, Sp, Acc
and AUC respectively, which consistently outperforms all
the current state-of-the-art methods. The comparison results
in Table I indicate that the proposed model consistently
achieves better results on different datasets, demonstrating the
robustness of the proposed model.

We further assess the extendibility of the proposed three-
stage deep learning model by conducting the cross-training
evaluation as in [33]. Different from the cross-training method
in [33] which retrained the deep learning model, we directly
apply the deep learning model trained on one dataset to other
datasets without retraining. Exemplar results of the cross-
training evaluation experiment are shown in Fig. 8. For the
DRIVE dataset, when transferring the model trained on the
STARE dataset, though most thick vessels are successfully
detected, the majority of thin vessels are missing. It is because
that the manual annotations for the STARE dataset mainly
contain thick vessels. In the proposed three-stage deep learning
model, as the thin vessel segmentation results would further
affect the vessel fusion results, the influence of those missing
thin vessels would be slightly magnified. As a result, when
transferring the model trained on the STARE dataset onto the
DRIVE dataset, the corresponding scores for Se, Sp, Acc
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Fig. 8: Exemplar results of the cross-training evaluations on datasets DRIVE and STARE. For each example of the DRIVE
dataset (from left to right), Row 1: the fundus image, the manual annotation, the probability map of thick vessels, the probability
map of thin vessels and the final probability map generated by the originally trained model on the STARE dataset; Row 2: the
corresponding probability maps generated by the retrained model using the other manual annotations. For the STARE dataset
(from left to right), Rows 1&2: the fundus images, the manual annotations, the probability maps of thick vessels, the probability
maps of thin vessels and the final probability maps generated by the originally trained model on the DRIVE dataset.
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TABLE II: Results of the cross-training evaluation

Test Dataset Methods Se Sp Acc AUC

DRIVE

Soares [23] - - 0.9397 -
Ricci [21] - - 0.9266 -
Marin [24] - - 0.9448 -
Fraz [25] 0.7242 0.9792 0.9456 0.9697
Li [33] 0.7273 0.9810 0.9486 0.9677

Proposed 0.7014 0.9802 0.9444 0.9568
Proposed 0.7443 0.9814 0.9509 0.9720

STARE

Soares [23] - - 0.9327 -
Ricci [21] - - 0.9464 -
Marin [24] - - 0.9528 -
Fraz [25] 0.7010 0.9770 0.9495 0.9660
Li [33] 0.7027 0.9828 0.9545 0.9671

Proposed 0.7319 0.9840 0.9580 0.9678
Italic results represent the results achieved by the retrained model on the

STARE dataset by using the manual annotations which contain both thick
vessels and thin vessels.

and AUC are slightly lower than other methods. To better
evaluate the extendibility of the proposed model, we retrain
the model on the STARE dataset by using the annotations
provided by the other human observer which contain both
thick and thin vessels. As shown in Fig. 8, when transferring
the retrained model onto the DRIVE dataset, more thin vessels
are successfully detected while the segmentation results of
thick vessels are quite similar. Therefore, the corresponding
scores achieved by the retrained model are 0.7443, 0.9814,
0.9509 and 0.9720 for Se, Sp, Acc and AUC respectively, all
better than the original results and those of other methods.

Conversely, as the manual annotations for the DRIVE
dataset contain more thin vessels, transferring the model
trained on the DRIVE dataset onto the STARE dataset is able
to segment more thin vessels as shown in Fig. 8. Comparing
the produced probability maps to the original fundus images,
we find that most segmented thin vessels are indeed true
vessels. As highlighted in the previous analysis, successfully
segmenting thin vessels would further positively affect the ves-
sel fusion results, especially improving the overall thickness
consistency. Therefore, when transferring the model trained on
the DRIVE dataset onto the STARE dataset, the corresponding
scores for Se, Sp, Acc and AUC are 0.7319, 0.9840, 0.9580,
0.9678, all better than other methods.

F. Evaluation on Thin Vessel Segmentation

In this section, we evaluate the effectiveness of the proposed
model on thin vessel segmentation by comparing it with the
state-of-the-art model in [29]. Before focusing the evaluation
on thin vessel segmentation, we first compare the overall
performance based on the above-mentioned evaluation metrics
and the evaluation metric used in [29], i.e. Dice Coefficient.
According to the reported results in [29], the optimal score
of Dice Coefficient on the DRIVE dataset is 0.8210 and
the corresponding score of the proposed model is 0.8141,
which is slightly lower. To better compare the performance,
we conducted additional experiments based on the probability
maps provided by [29]. For both our method and [29], the Otsu
automatic thresholding algorithm is applied to the probability
maps for generating the final segmentation results (as the

Fig. 9: Exemplar results of the adaptive-thresholding exper-
iment on the DRIVE dataset. For each group (from top to
bottom): Row 1: the fundus images and the corresponding
manual annotations; Row 2: the probability maps generated
by [29] and the corresponding hard segmentation maps by
applying the Otsu automatic thresholding algorithm; Row 3:
the probability maps obtained by the proposed model and the
corresponding hard segmentation maps by applying the Otsu
automatic thresholding algorithm.

TABLE III: Comparison results with Maninis [29] on the
adaptive-thresholding experiment on the DRIVE Dataset

Vessels Methods Se Sp Acc CAL

All Maninis [29] 0.9548 0.8999 0.9069 0.7862
Proposed 0.8939 0.9466 0.9399 0.8224

optimal threshold to reproduce the results in [29] is unknown).
Exemplar results of such adaptive-thresholding experiment are
shown in Fig. 9. Visually, the probability maps generated by
the proposed model are much “cleaner” than those probability
maps in [29]. In other words, the proposed model can better
distinguish vessel pixels from non-vessel pixels, which helps
achieve better thickness consistency compared to the annotated
vessels, especially for those thin vessels. When applying the
above evaluation metrics to the segmentation maps generated
by the proposed model and the model in [29] on the DRIVE
dataset, the proposed model achieves better performance in
terms of Sp and Acc as shown in Table III. The decrease in Se
is mainly due to that the segmented vessels in the probability
maps of [29] are much thicker than those segmented vessels by
the proposed model, and thus result in a higher Se and a lower
Sp. In comparison, the segmented vessels by the proposed
model are thinner and have better thickness consistency. As a
result, small location variations of those segmented thin vessels
would lead to a non-trivial decrease in Se. In fact, small
location variations of thin vessels among observers are quite
common and acceptable, and this issue has been extensively
discussed in [36].

According to the analysis in [36], the above evaluation
metrics would emphasize more on the segmentation of thick
vessels and less on that of thin vessels. Therefore, we fur-
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ther implement the f(C,A,L) function proposed in [42]
to emphasize thick and thin vessels more equally in the
evaluation. In the f(C,A,L) function, parameter C penalizes
fragmented segmentations by comparing the number of con-
nected segments in the manual annotation and in the generated
segmentation map. Parameter A measures the degree of over-
lapping areas between the manual annotation and the generated
segmentation map. Parameter L compares the lengths of
vessels in the manual annotation and in the segmentation map.
Obviously, the f(C,A,L) function could better balance the
relative importance between thick vessels and thin vessels for
quality evaluation. According to the results in Table III, the
proposed model can achieve 0.8224 for f(C,A,L) while the
corresponding score obtained by [29] is 0.7862, which offers
another perspective for comparison. The above experimental
results demonstrate that the proposed model achieves better
overall performance compared to the model of [29].

Fig. 10: Vessel separation for quality evaluation on thin vessel
segmentation. From left to right: the manual annotation, the
identified thin vessels, and the defined vessel and non-vessel
pixels (gray regions represent non-vessel pixels and black
regions are vessel pixels) for quality evaluation of thin vessel
segmentation.

TABLE IV: Comparison results with Maninis [29] on thin
vessel segmentation on the DRIVE dataset

Vessels Methods Se Sp Acc

Thin Maninis [29] 0.9017 0.6745 0.7255
Proposed 0.8170 0.8115 0.8127

In addition to the implemented f(C,A,L) function, we
further evaluate the effectiveness of the proposed model on
thin vessel segmentation by designing specific metrics. Given a
manual annotation, we segment the entire vessel tree into small
vessel segments and identify those vessel segments whose
average thickness is less than 3 pixels. These identified vessels
are considered as thin vessels as shown in Fig. 10. For each
thin vessel segment, a 3-pixel range is assigned and the metrics
Se, Sp and Acc are calculated based on pixels located within
the range for evaluation (i.e., we only focus on the pixels
in the 3-pixel range). Table IV shows the comparison results,
which reaches similar conclusion to Table III. As noted before,
those segmented thin vessels in the probability maps generated
by [29] are much thicker which helps achieve a higher Se.
However, the performance of Sp and Acc would be negatively
impacted due to the false positives. From the comparison
results on thin vessel segmentation, we conclude that the
proposed model achieves better performance especially on
thickness consistency and non-vessel pixels identification.

Fig. 11: Exemplar results in dealing with challenging cases.
For each row, from left to right: the fundus images, the
enlarged fundus image patches, the manual annotations and
the probability maps generated by the proposed three-stage
deep learning model.

V. DISCUSSION

Though retinal vessel segmentation is an active research
field, there still exist several key problems that need to be
addressed: 1) segmentation of low-contrast micro vessels; 2)
vessel segmentation in the presence of central vessel reflex;
and 3) vessel segmentation in the presence of lesions. Exem-
plar results on these challenging cases are shown in Fig. 11.
As the proposed three-stage deep learning framework contains
a separate model for thin vessel segmentation, those low-
contrast micro vessels can be effectively detected. In addition,
the produced probability map also contains true vessels that are
not annotated by the human observer. In the proposed three-
stage deep learning model, thick vessels are first segmented by
the ThickSegmenter model and then further refined by the Fu-
sionSegmenter model with guidance of the corresponding thin
vessels. Therefore, the problem introduced by the presence of
central vessel reflex can be largely solved as shown in Row
2 of Fig. 11. As the presence of lesions mainly affects the
local features for thick vessel segmentation, the influence can
be effectively removed by the ThinSegmenter model and the
FusionSegmenter model. As a result, the presence of lesions
would have little effect on the final vessel segmentation results.
In summary, the proposed three-stage deep learning model can
effectively address these challenging cases, as demonstrated by
the experimental results.

VI. CONCLUSION

In this paper, we address the retinal vessel segmentation
problem by considering thick and thin vessels separately.
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Specifically, we propose to divide the retinal vessel seg-
mentation task into three sub-tasks, each of which trains a
deep learning model using a unique pixel-wise loss, so that
the segmentation of thick and thin vessels can be separately
implemented. Experimental results on multiple public datasets
demonstrate that the proposed three-stage deep learning model
outperforms the current state-of-the-art methods. Results on
cross-training evaluation and challenging cases demonstrate
excellent generalization ability and robustness of the proposed
model.
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