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Abstract. Segmenting gland instance in histology images requires not
only separating glands from a complex background but also identify-
ing each gland individually via accurate boundary detection. This is a
very challenging task due to lots of noises from the background, tiny
gaps between adjacent glands, and the “coalescence” problem arising
from adhesive gland instances. State-of-the-art methods adopted multi-
channel/multi-task deep models to separately accomplish pixel-wise gland
segmentation and boundary detection, yielding a high model complexity
and difficulties in training. In this paper, we present a unified deep model
with a new shape-preserving loss which facilities the training for both
pixel-wise gland segmentation and boundary detection simultaneously.
The proposed shape-preserving loss helps significantly reduce the model
complexity and make the training process more controllable. Compared
with the current state-of-the-art methods, the proposed deep model with
the shape-preserving loss achieves the best overall performance on the
2015 MICCAI Gland Challenge dataset. In addition, the flexibility of
integrating the proposed shape-preserving loss into any learning based
medical image segmentation networks offers great potential for further
performance improvement of other applications.

Keywords: Deep convolutional neural network - gland instance segmen-
tation - shape-preserving loss - histology image analysis.

1 Introduction

Accurate gland instance segmentation from histology images is a crucial step for
pathologists to quantitatively analyze the malignancy degree of adenocarcinomas
for further diagnosis [1]. However, manual annotation of gland instances is time
consuming given the large size of a histology image and a large number of glands
in an image. Therefore, accurate and automatic methods for gland instance
segmentation are in great demand. Gland instance segmentation consists of two
sub-tasks: 1) gland segmentation which separates glands from the background
and 2) boundary detection so as to identify each gland individually, as shown
in Fig. 1. In practice, gland instance segmentation is a challenging task due
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to the following two unique characteristics. First, the appearances of glands
vary significantly in different histology image patches (or even within a single
patch), as shown in Fig. 1. Large appearance variations make the pixel-wise
gland segmentation problem very challenging. Second, some gland instances are
very close to each other or even share one entity borders, making it hard to
identify gland instances individually and preserve the shape of each gland.

(d

Fig. 1. Gland instance segmentation problem: (a) histology image patch, (b) gland seg-
mentation, (c¢) boundary detection and (d) ground-truth gland instance segmentation
(different colors represent different gland instances). Gland instance segmentation can
be regarded as the combination of boundary detection and gland segmentation.

Several methods have been proposed for accurate gland instance segmen-
tation. Xu et al. [2,3] proposed multi-channel deep neural networks to extract
gland region, boundaries and location cues separately. The results from different
channels were fused to produce the final gland instance segmentation result. In
their methods, different channels and the fusion module were implemented us-
ing different deep learning architectures and were pre-trained separately. While
achieving the best performance so far on the 2015 MICCAI Gland Challenge
dataset, the method incurs a high model complexity and complicated training
process. Chen et al. [4] formulated the gland instance segmentation problem
as a multi-task learning problem. The model contains two branches trained us-
ing the manual annotations for gland segmentation and the manually generated
boundary maps for boundary detection separately.

Different from the complicated multi-channel/-task deep models, we propose
a shape-preserving loss which enables a single deep model to jointly learn pixel-
wise gland segmentation and boundary detection simultaneously. The proposed
shape-preserving loss mainly consists of two parts: 1) a pixel-wise cross-entropy
loss for gland segmentation and 2) a shape similarity loss for gland boundary
detection. Experimental results demonstrate that the deep model trained by
the shape-preserving loss outperforms the state-of-the-art methods on the pub-
lic gland segmentation dataset. In addition, the great flexibility of the shape-
preserving loss for integration into any deep learning models is a significant
benefit.

2 Method

A straightforward solution to learn a unified deep model for both gland seg-
mentation and boundary detection is to minimize pixel-wise cross-entropy losses
between: (1) detected gland pixels and annotated gland pixels (gland segmenta-
tion), (2) detected gland boundaries and annotated boundaries (gland boundary
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detection). However, learning a boundary detector via pixel-wise cross-entropy
loss utilizes only information of individual pixels with little consideration of
global shape information of an entire boundary segment. In addition, it is often
very challenging to precisely localize gland boundary pixels due to the ambiguity
at gland boundaries as well as low contrast, as shown in Fig. 2(a). Consequently,
directly using the pixel-wise cross-entropy loss for gland instance segmentation
would suffer from poor performance on shape preservation. Increasing the im-
portance of boundary pixels could partially solve the problem while it would also
degrade the gland segmentation performance due to numerous holes in gland seg-
mentation results. Therefore, it is difficult for the pixel-wise cross-entropy loss
to balance the importance between boundary detection and gland segmentation
in the training process. In this section, we first present a novel shape-preserving
loss to enable a unified deep model for both accurate and efficient boundary
detection and gland segmentation followed by the corresponding deep model.

2.1 Shape-preserving Loss

The proposed shape-preserving loss consists of two losses: 1) a shape similarity
loss [5] which is able to detect boundary segments with similar geometric shapes
as manual annotations while allows certain boundary location variations arising
from low intensity contrast and ambiguities of boundaries; and 2) a weighted
pixel-wise cross-entropy loss for close and/or adhesive gland segmentation. In
the following, we describe each loss in more details.

(b) (©
Fig. 2. Shape-preserving loss construction: (a) histology patch by remapping the an-
notated boundaries, (b) boundary segmentation map, (c) searching range map and
(d) weight map background pixels between close glands. In the boundary segmenta-
tion map, different boundary segments are assigned with different colors. In the weight
map, the intensity of each pixel represents its weight (0~1.0).

Shape Similarity Loss Given a manual annotation, we first generate the cor-
responding boundary map and segment the whole boundary map into boundary
segments (by default the length is in the range of [16, 24] pixels) as shown in Fig.
2(b). For each boundary segment I;, as shown in Fig. 2(c) a 3-pixel searching
range is assigned to find the corresponding boundary segment s; in the output
segmentation map. As the 3-pixel searching range allows limited location vari-
ation between [; and s;, the measurement is less restrictive and more efficient
compared to the pixel-wise cross-entropy measurement. Then, the shape similar-
ity is measured based on the curve fitting method. Given [; and s;, we adopt a
curve (cubic function) fitting method to obtain their approximated curve func-
tions f(l;) = a1z + bia? + iz + dy and f(s;) = agx® + bea? + cox + do. The
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shape similarity between [; and s; is defined as

< Fy,F5 >

88; =
‘ |F1| ||

el )
where Fy = [a1,b1,c1], Fo = [ag, b2, ca], <> is the dot product operation and ||
measures the length of the vector. Furthermore, if |s;| < 0.9-];] or |s;] > 1.2-|1;],
the shape similarity ss; is manually set as 0. Based on the shape similarity mea-
surement, the shape similarity loss L for pixels in the generated segmentation
map located within the 3-pixel searching range is constructed as Ly = ws-(1—ss),
where w; is set to 4 to increase the importance of the shape similarity loss in
the overall loss calculation.

Weighted Pixel-wise Cross-entropy Loss To better identify close and/or
adhesive gland instances individually and inspired by the weight matrix in the
U-Net model [6], we construct a weight matrix W which effectively increases the
importance of those background pixels between close gland instances. For each
background pixel 4, the weight w(i) is defined as

1

w(e) =1+ wo TG @)

where d; denotes the distance to the nearest gland and ds is the distance to the
second nearest gland. In our experiments we set wg = 6 and p = 15 pixels.
Accordingly, the shape-preserving loss L can be formulated as

L=W-L, (1+Ly), (3)

where L, is the overall pixel-wise cross-entropy loss for gland segmentation.

2.2 Deep Convolutional Neural Network

In terms of the deep learning architecture, we design the deep model with ref-
erence to the HED model [7, 8] which was proposed for edge/contour detection.
Since the deep model has multiple side outputs, the model is able to learn accu-
rate boundary detection by the first several side outputs and accurate pixel-wise
gland segmentation by the last few side outputs. As the shape-preserving loss
re-balances the importance between boundary detection and pixel-wise gland
segmentation, the training process is controllable and is able to converge quickly.

3 Evaluation and Discussion

We evaluated the proposed deep model on the 2015 MICCAI Gland Challenge
dataset [9]. Three officially provided metrics are used for the performance eval-
uation: 1) the F1 score, 2) the object-level dice score and 3) the object-level
Hausdorff distance. We compared our method with three state-of-the-art meth-
ods, i.e. Chen et al. [4] which achieved the best results in the 2015 MICCAI
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Fig. 3. The overview of the proposed deep network jointly trained by the shape-
preserving loss.

Gland Segmentation Challenge and the multi-channel deep models proposed by
Xu et al. [2, 3] which reported the best performance so far on this dataset. Table
1 shows the comparison results among these methods. Based on the construction
of the proposed shape-preserving loss, the deep model is able to identify different
glands individually which helps achieve the best performance in the F1 score.
As the shape similarity measurement in the shape-preserving loss allows lim-
ited boundary location variation, the performance of the deep model in terms
of the object-level dice score would be slightly influenced. Since the radius of
the searching range adopted is set to only 3 pixels, the influence would be rela-
tively limited and the deep model can still achieve top results. Similarly, as the
shape similarity measurement is different from the definition of the Hausdorff
distance, the performance may also be influenced. In short, the deep model with
the proposed shape-preserving loss achieves the best overall performance.

Table 1. Comparison results among different methods on the public dataset.

Method F1 Score ObjectDice |ObjectHausdorff
Part A[Part B[Part A[Part B|Part A| Part B

Ours 0.924 0.844| 0.902 0.840|49.881 106.075

Xu [2] 0.893 0.843 [0.908 0.833 (44.129 116.821
Xu [3] 0.858 0.771 | 0.888 0.815 |54.202 129.930
Chen [4] 0.912 0.716 | 0.897 0.781 |45.418 160.347

Exemplar segmentation results are shown in Fig. 4. Compared to the manual
annotations, the deep model can effectively segment different glands individually
and preserve shapes of glands accurately. Although boundaries of the segmented
glands are slightly different from those annotated boundaries at the pixel-wise
level, the shapes of different glands are well preserved, which is quite important
for further diagnosis. In dealing with close glands, due to the constructed weight
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Fig. 4. Exemplar segmentation results obtained by the proposed deep model. For each
row, from left to right: raw histology patch, manual annotation, generated probabil-
ity map and the output segmentation map. In both manual annotation and output
segmentation map, different glands are assigned with different colors.

matrix, the deep model can effectively separate close glands although the gaps
between close glands are slightly enlarged.

Several challenging cases are shown in Fig. 5. As we adopt a new shape sim-
ilarity measurement instead of the pixel-wise cross-entropy measurement, the
deep model should be able to detect boundaries more effectively. However, as
we directly adopt the Otsu thresholding method to generate final segmentation
maps for evaluation, some background pixels may not be successfully identi-
fied although the probability values are relatively lower than those neighboring
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Fig. 5. Challenging cases in dealing with close boundaries. For each row, from left
to right: raw histology patch, manual annotation, generated probability map and the
output segmentation map. In both manual annotation and output segmentation map,
different glands are assigned with different colors.

gland pixels. One possible way to solve the problem is to search for an optimal
threshold to generate the final segmentation map or to utilize an adaptive lo-
cal thresholding scheme. These solutions will be explored in our future work as
post-processing for performance improvement. Another issue is caused by the
curve fitting method in the shape similarity measurement as shown in the sec-
ond row of Fig. 5. Since the lengths of [; and s; in (1) are not required to be
exactly the same, it is possible that although most boundary pixels are correctly
identified, two glands may be wrongly connected by some discrete pixels. One
solution to address the problem is to reduce the default length in the boundary
segmentation process as discussed in Section 2.1.

Exemplar failure cases are shown in Fig. 6. The main reason for these failures
is the shortage of corresponding training samples. One interesting observation
is that although the deep model fails to identify some glands, the boundaries of
most segmented glands are quite similar to those annotated boundaries, which
demonstrates the effectiveness of the proposed loss in shape preservation.

4 Conclusion

In this paper, we propose a deep model with a new shape-preserving loss that
achieves the best overall performance on gland instance segmentation. Com-
pared to the current best-known multi-channel/-task deep models, the shape-
preserving loss enables one single deep model to generate accurate gland instance
segmentation, which could largely reduce the model complexity and could be uti-
lized in any other deep learning models for medical image segmentation.
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Fig. 6. Exemplar bad results generated by the proposed deep model. For each row, from
left to right: raw histology patch, manual annotation, generated probability map and
the output segmentation map. In both manual annotation and output segmentation
map, different glands are assigned with different colors.
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